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Mathematical formulations of the embedding methods commonly used for the 
reconstruction of attractors from data series are discussed. Embedding 
theorems, based on previous work by H. Whitney and F. Takens, are estab- 
lished for compact subsets A of Euclidean space R k. If n is an integer larger than 
twice the box-counting dimension of A, then almost every map from R k to R ", 
in the sense of prevalence, is one-to-one on A, and moreover is an embedding 
on smooth manifolds contained within A. If A is a chaotic attractor of a typical 
dynamical system, then the same is true for almost every delay-coordinate map 
from R ~ to R n. These results are extended in two other directions. Similar results 
are proved in the more general case of reconstructions which use moving 
averages of delay coordinates. Second, information is given on the self-intersec- 
tion set that exists when n is less than or equal to twice the box-counting 
dimension of A. 

KEY WORDS:  Embedding; chaotic attractor; attractor reconstruction; 
probability one; prevalence; box-counting dimension; delay coordinates. 

1. I N T R O D U C T I O N  

In this, work we give theoretical justification of data embedding techniques 
used by experimentalists to reconstruct dynamical information from time 
series. We focus on cases in which trajectories of the system under study 
are asymptotic to a compact attractor. We state conditions that ensure that 
the map from the attractor into reconstruction space is an embedding, 
meaning that it is one-to-one and preserves differential information. Our 
approach integrates and expands on previous results on embedding by 
Whitney (29) and Takens. (27) 
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Whitney showed that a generic smooth map F from a d-dimensional 
smooth compact manifold M to R 2d+ 1 is actually a diffeomorphism on M. 
That is, M and F(M) are diffeomorphic. We generalize this in two ways: 
first, by replacing "generic" with "probability-one" (in a prescribed sense), 
and second, by replacing the manifold M by a compact invariant set A 
contained in R k that may have noninteger box-counting dimension 
(boxdim). In that case, we show that almost every smooth map from a 
neighborhood of A to R" is one-to-one as long as 

n > 2- boxdim(A) 

We also show that almost every smooth map is an embedding on compact 
subsets of smooth manifolds within A. This suggests that embedding 
techniques can be used to compute positive Lyapunov exponents (but 
not necessarily negative Lyapunov exponents). The positive Lyapunov 
exponents are usually carried by smooth unstable manifolds on attractors. 
We give precise definitions of one-to-one, embedding, and almost every in 
the next section. 

Takens dealt with a restricted class of maps called delay-coordinate 
maps. A delay-coordinate map is constructed from a time series of a single 
observed quantity from an experiment. Because of this, a typical delay- 
coordinate map is much more likely to be accessible to an experimentalist 
than a typical map. Takens (27) showed that if the dynamical system and the 
observed quantity are generic, then the delay-coordinate map from a 
d-dimensional smooth compact manifold M to R 2d+1 is a diffeomorphism 
on M. 

Our results generalize those of Takens ~27) in the same two ways as for 
Whitney's theorem. Namely, we replace generic with probability-one and 
the manifold M by a possibly fractal set. Thus, for a compact invariant 
subset A of R k, under mild conditions on the dynamical system, almost 
every delay-coordinate map F from R k to R n is one-to-one on A provided 
that n > 2 . b o x d i m ( A ) .  Also, any manifold structure within A will be 
preserved in F(A). These results hold for lower box-counting dimension 
(see Section 4) if boxdim does not exist. The ambient space R k can b e  
replaced by a k-dimensional smooth manifold in the general case. In 
addition, we have made explicit the hypotheses on the dynamical system 
(discrete or continuous) that are needed to ensure that the delay-coor- 
dinate map gives an embedding. In particular, only C 1 smoothness is 
needed. For  flows, the delay must be chosen so that there are no periodic 
orbits whose period is exactly equal to the time delay used or twice the 
delay. (A finite number of periodic orbits of a flow whose periods are p 
times the delay are allowed for p >~ 3.) Further, we explain what happens 
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in the case that n ~<2.boxdim(A). In that case we put bounds on the 
dimension of the self-intersection set, which is the set on which the one- 
to-one property fails. Finally, we give more general versions of the delay- 
coordinate theorem which deals with filtered delay coordinates, which 
allow more versatile and useful applications of embedding methods. 

There are no analogues of these results where the box-counting 
dimension is replaced by Hausdorff dimension (see Theorem 4.7 and the 
discussion that follows). In an Appendix to this work written by I. Kan, 
examples are described of compact subsets of R k, for any positive integer 
k, which have Hausdorff dimension d =  0, and which are difficult to project 
in a one-to-one way. The requirement n > 2d discussed above translates in 
this case to n > 0. However, every projection of such a set to R n, n < k, fails 
to be one-to-one. 

In Section 2 we explain the new version of the Whitney and Takens 
embedding theorems. In Section 3 we discuss filtered delay coordinates. 
Section 4 contains proofs of the results. 

2. H O W  TO EMBED M A N I F O L D S  A N D  FRACTAL SETS 

2.1., Fractal Wh i tney  Embedding Prevalence Theorem 

Assume ~ is a flow on Euclidean space R k, generated, for example, by 
an autonomous system of k differential equations. Assume further that all 
trajectories are asymptotic to an attractor A. The study of long-time 
behavior of the system will involve the study of the set A. 

In a typical scientific experiment, the phase space R k cannot be 
explicitly seen. The experimenter tries to infer properties of the system by 
taking measurements. Since each state of the dynamical system is uniquely 
specified by a point in phase space, a measured quantity is a function from 
phase space to the real number line. If n independent quantities Q1,..., Q~ 
can be measured simultaneously, then with each point in phase space is 
associated a point in Euclidean space R n. We can then talk about the 
measurement function 

F(state) = (Q1 ..... Qn) 

which maps R k to R n. 
For  example, suppose all trajectories in phase space R k are attracted 

to a periodic cycle. Thus, A is topologically a circle lying in R k. Imagine 
that two available measurement quantities Q~ and Q2 are plotted in the 
plane. Then there is a measurement map F from A to R 2 given by 
F(s ta te )=(Q~,  Q2)- To what extent are the properties of the hidden 
attractor A preserved in the observable "reconstruction space" R2? 

822/65/3-4-11 
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The answer depends on how the circle is mapped to R 2 under F. 
Consider the case where Rk=  R 3 and Q1 and Q2 are simply the two coor- 
dinate functions x~ and x2. In Fig. la, the relative position of the points is 
preserved upon projection, and we may view F(A) as a faithful reconstruc- 
tion of the attractor A. If distinct points on the attractor A map under F 
to distinct points on F(A), we say that F is one-to-one on A. 

In the case of Fig. lb, on the other hand, two different states of the 
dynamical system have been identified together in F(A). In the reconstruc- 
tion space, which is all the experimenter actually sees, the two distinct 
states cannot be distinguished, and information has been lost. 

The one-to-one property is useful because the state of a deterministic 
dynamical system, and thus its future evolution, is completely specified by 
a point in phase space. Suppose that at a given state x one observes the 
value F(x) in the reconstruction space, and that this is followed 1 sec later 
by a particular event. If F is one-to-one, each appearance of the 
measurements represented by F(x) will be followed 1 sec later by the same 
event. This is because there is a one-to-one correspondence between the 
attractor points in phase space and their images in reconstruction space. 
There is predictive power in finding a one-to-one map. 

Perhaps the measurements F(x) would not be repeated precisely. Yet 
if the map F is reasonable, similar measurements will predict similar events. 
This approach to prediction and noise reduction of data is being pursued 
by a number of research groups. 

Although most of the interest lies in the case that A is an attractor of 
a dynamical system, the main question can be posed in more generality. 
Let A be a compact subset of Euclidean space R k, and let F map R ~ to 
another Euclidean space R n. Under what conditions can we be assured that 
A is "embedded" in R n by typical maps F? 

The precise definition of embedding involves differential structure. A 
one-to-one map is a map that does not collapse points, that is, no two 
points are mapped to the same image point. An embedding is a map that 
does not collapse points or tangent directions. Thus, to define embedding, 
we need to be working on a compact set A that has well-defined tangent 
spaces. 

Let A be a compact smooth differentiable manifold. (Here, as in the 
remainder of the paper, the word smooth will be used to mean continuously 
differentiable, or C~.) A smooth map F on A is an immersion if the 
derivative map DF(x) (represented by the Jacobian matrix of F at x) is 
one-to-one at every point x of A. Since DF(x) is a linear map, this is 
equivalent to DF(x) having full rank on the tangent space. This can happen 
whether or not F is one-to-one. Under an immersion, no differential 
structure is lost in going from A to F(A). 
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An embedding of A is a smooth diffeomorphism from A onto its image 
F(A), that is, a smooth one-to-one map which has a smooth inverse. For 
a compact manifold A, the map F is an embedding if and only if F is a one- 
to-one immersion. Figure la shows an example of an embedding of a circle 
into the plane. Figure lb shows an immersion that is not one-to-one, and 
Fig. lc shows a one-to-one map that fails to be an immersion. 

Whether or not a typical map from A to R n is an embedding of A 
depends on the set A, and on what we mean by "typical." A celebrated 
result of this type is the embedding genericity theorem of Whitney, (29) 
which says that if A is a smooth manifold of dimension d, then the set of 
maps into R 2d+ 1 that are embeddings of A is an open and dense set in the 
Cl-topology of maps. 

The fact that the set of embeddings is open in the set of smooth maps 
means that given each embedding, arbitrarily small perturbations will still 
be embeddings. The fact that the set of embeddings is dense in the set of 
maps means that every smooth map, whether it is an embedding or not, is 
arbitrarily near an embedding. One would like to conclude from Whitney's 
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Fig. 1. (a) An embedding F of the smooth manifold A into R 2. (b) An immersion that fails 
to be one-to-one. (c) A one-to-one map that fails to be an immersion. 



584 Sauer et  at. 

theorem that n = 2d+  1 simultaneous measurements are typically sufficient 
to reconstruct a d-dimensional state manifold A in the measurement 
space R n. 

However, open dense subsets, even of Euclidean space, can be thin in 
terms of probability. There are standard examples, many from recent 
studies in dynamics, of open dense sets that have arbitrarily small Lebesgue 
measure, and therefore arbitrarily small probability of being realized. 

A well-known example is the phenomenon of Arnold tongues. 
Consider the family of circle diffeomorphisms 

go~.k(x) = x + co + k sin x mod 2r~ 

where 0 ~< co ~< 2n and 0 ~< k < ! are parameters. For  each k we can define 
the set 

Stab(k) = {0 ~< ~o ~< 2~r: go),k has a stable periodic orbit } 

For  0 < k <  1, the set Stab(k) is a countable union of disjoint open 
intervals of positive length, and is an open dense subset of [0, 2~r]. 
However, the total length (Lebesgue measure) of the open dense set 
Stab(k) approaches zero as k--, 0. For  small k, the probability of landing 
in this open dense set is very small. See ref. 3 for more details. 

With such examples in mind, an experimentalist would like to make a 
stronger statement than that the set of embeddings is an open and dense 
set of smooth maps. Instead, one would like to know that the particular 
map that results from analyzing the experimental data is an embedding 
with probability one. 

The problem with such a statement is that the space of all smooth 
maps is infinite-dimensional. The notion of probability one on infinite- 
dimensional spaces does not have an obvious generalization from finite- 
dimensional spaces. There is no measure on a Banach space that 
corresponds to Lebesgue measure on finite-dimensional subspaces. None- 
theless, we would lilke to make sense of "almost every" map having some 
property, such as being an embedding. Following ref. 24, we propose the 
following definition of prevalence. 

D e f i n i t i o n  2.1. A Borel subset S of a normed linear space V is 
prevalent if there is a finite-dimensional subspace E of V such that for each 
v in V, v + e belongs to S for (Lebesgue) almost every e in E. 

We give the distinguished subspace E the nickname of probe space. 
The fact that S is prevalent means that if we start at any point in the 
ambient space V and explore along the finite-dimensional space of direc- 
tions specified by E, then almost every point encountered will lie in S. 
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Notice that any space containing a probe space for S is itself a probe space 
for S. In other words, if E '  is any finite-dimensional space containing E, 
then perturbations of any element of V by elements of E '  will be in S with 
probability one. This is a simple consequence of the Fubini theorem. (22) 

From this fact it is easy to see that a prevalent subset of a finite- 
dimensional vector space is simply a set whose complement has zero 
measure. Also, the union or intersection of a finite number of prevalent sets 
is again prevalent. We will often use the notion of prevalence to describe 
subsets of functions. It follows from the definition that prevalent implies 
dense in the Ck-topology for any k. More generally, prevalent implies dense 
in any normed linear space. 

When a condition holds for a prevalent set of functions, it is usually 
illuminating to determine the smallest, or most efficient, probe subspace E. 
This corresponds to the minimal amount of perturbation that must be 
available to the system in order for the condition to hold with virtual 
certainty. 

As stated above, for subsets of finite-dimensional spaces the term 
prevalent is synonomous with "almost every," in the sense of outside a set 
of measure zero. When there is no possibility of confusion, we will say that 
"almost every" map satisfies a property when the set of such maps is 
prevalent, even in the infinite-dimensional case. For  example, consider 
convergent Fourier series in one variable, which form an infinite-dimen- 
sional vector space with basis i~x {e } . . . .  . In the sense of prevalence, 
almost every Fourier series has nonzero integral on [0, 2re]. The probe 
space E in this case is the one-dimensional space of constant functions. If 
E' is a vector space of Fourier series which contains the constant functions, 
then for every Fourier series f,  the integral of f +  e will be nonzero for 
almost every e in E'.  

With this definition, we introduce a prevalence version of the Whitney 
embedding theorem. 

T h e o r e m  2.2 (Whitney Embedding Prevalence Theorem). Let A be 
a compact smooth manifold of dimension d contained in R k. Almost every 
smooth map R ~ --, R 2d+ 1 is an embedding of A. 

In particular, given any smooth map F, not only are there maps 
arbitrarily near F that are embeddings, but in the sense of prevalence, 
almost all of the maps near F are embeddings. The probe space E of 
Definition 2.1 is the k(2d + 1)-dimensional space of linear maps from R k to 
R2d+ 1. This theorem, which is proved in Section 4, gives a stengthening of 
the traditional statement of the Whitney embedding theorem. 

It is quite interesting that Whitney later proved the different result that 
under the same circumstances, there exists an embedding into R 2d. (This 
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could be called the Whitney embedding existence theorem.) However, an 
existence theorem is of little help to an experimentalist, who needs informa- 
tion about maps near the particular one that happens to be available. 
Knowledge that an embedding exists sheds little information on the 
particular F under study. 

The example  of Fig. lb shows that the dimension 2 d + l  of 
Theorem 2.2 is the best possible. The map F is not one-to-one on the 
twisted circle A, thus does not embed A into R 2. Further, no nearby map 
(even in the C~ embeds A. On the other hand, if a given map of 
the circle A into R 3 was not one-to-one, there would necessarily be a 
prevalent set of nearby maps that are embeddings. 

The first main goal of this section was to express Whitney's embedding 
theorem (and Takens' theorem; see below) in this probabilistic sense. The 
second is to extend Whitney's theorem to sets A that are not manifolds. 
Here we use the fractal dimension known as box-counting dimension. 

The box-counting (or capacity) dimension of a compact set A in R n is 
defined as follows. For a positive number e, let A~ be the set of all points 
within e of A, i.e., A~ = {x ~ Rn: I x - a ]  ~< e for some a ~ A }. Let vol(A~) 
denote the n-dimensional outer volume of A~. Then the box-counting 
dimension of A is 

boxdim(A) = n - lira log vol(A~) 
~ o log e 

if the limit exists. If not, the upper (respectively, lower) box-counting 
dimension can be defined by replacing the limit by the lim inf (resp., 
lira sup). When the box-counting dimension exists, the approximate scaling 
law 

vol(A~) ~ e" - a 

holds, where d =  boxdim(A). 
There are several equivalent definitions of box-counting dimension. 

For  example, R n can be divided into s-cubes by a grid based, say, at points 
whose coordinates are s-multiples of integers. Let N(e) be the number of 
boxes that intersect A. Then 

boxdim(A) = lim log N(e) 
~-~o - l o g  e 

with similar provisions for upper and lower box-counting dimension. The 
scaling in this case is 

N(e) ~ ~ a 
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Even if we know the box-counting dimension of an attractor A, 
Theorem 2.2 gives no estimate on the lowest dimension for which almost 
every map is an embedding. Suppose we know that A is the invariant set 
of a flow on R 1~176 and that the box-counting dimension of A is 1.4. In the 
absence of any knowledge about the containment of A in a smooth 
manifold of dimension less than 100, the use of Theorem 2.2 to get a one- 
to-one reconstruction requires the use of maps into R 2~ In fact, the 
smallest smooth manifold that contains the 1.4-dimensional attractor may 
indeed have dimension 100. But as the next result shows, one can do much 
better: almost every reconstruction map into R 3 will be one-to-one on A. 

Theorem 2.:$ (Fractal Whitney Embedding Prevalence Theorem). 
Let A be a compact subset of R k of box-counting dimension d, and let n 
be an integer greater than 2d. For almost every smooth map F: R k ~  R ~, 

1. F i s  one-to-one on A 

2. F i s  an immersion on each compact subset C of a smooth manifold 
contained in A. 

The proof of the one-to-one half of the fractal Whitney embedding 
prevalence theorem may be sketched as follows. Choose any bounded 
finite-dimensional space E of smooth maps F so that varying F by elements 
of E results in perturbing F(x) - F(y) throughout R n for each pair x ~ y in 
A. For  example, the probe space E can be taken to be the space of linear 
maps from R k to R n. Then the probability (measured in E) that the 
perturbed F(x) and F(y) lie within e is on the order of e n. Similarly, if B~ 
and B2 are e-boxes on A, the probability that F(B1) and F(B2) intersect is 
on the order of e n. Here we assume that there is a bound on the magnifica- 
tion of F, as when F is a smooth map near the compact set A. The set A 
can be covered by essentially e -d boxes of size e, and the number of pairs 
of boxes is proportional to (e-u) 2. The probability that no distinct pair of 
boxes collide in the image F(A) is proportional to (e-d)2en=e "-2d. If 
n > 2d, this probability of choosing a perturbation of F that fails to be one- 
to-one is negligible for small e. More precise details of the proof, as well as 
the immersion part, are in Section 4. 

2.2. Fractal Delay Embedding Prevalence Theorem 

Despite the beauty of Whitney's embedding theorem, it is rare for a 
scientist to be able to measure a large number of independent quantities 
simultaneously. In fact, it is a rather subtle problem to decide whether two 
different simultaneous measurements are indeed independent. These 
problems can be sidestepped to some degree by introducing the use of 
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delay coordinates. In this approach, only one measurable quantity is 
needed. 

In a typical experiment, the single measurable quantity is sampled at 
intervals T time units apart. The resulting list of samples {Qt} is called a 
time series. Think of the measurable quantity as an observation function h 
on the state space R k on which the dynamical system 05 is acting. Each 
reading Q, = h(xt) is the result of evaluating the observation function h at 
the current state x ,  

D e f i n i t i o n  2.4. If r is a flow on a manifold M, T is a positive 
number (called the delay), and h: M ~ R is a smooth function, define the 
delay-coordinate map F(h, qS, T): M ~ R n by 

F(h, qS, T)(x) = (h(x), h(r h(Cb_zr(X)),..., h(~_(~ ,)r(x))) 

To start with a simple example, let A be a periodic orbit of the flow 
~b. We found above that in the absence of dynamics, three independent 
coordinates are required to embed A in reconstruction space, or more 
precisely, that almost every smooth map F = ( f l , f 2 , f 3 )  from a 
neighborhood of A to R 3 is an embedding on A. 

Now the situation is different. Instead of three functions f l ,  f2, f3 that 
must be independent, there is a single function h, and the corresponding 
map F(h, ~b, T) pictured in Fig. 2. We want to know that for almost every 
function h from A to the real numbers R, the delay-coordinate map 
F(h, ~, T) from A into R" is an embedding. It should be stressed that this 
does not follow from Theorems 2.2 and 2.3. The maps F(h, q~, T) form a 
restricted subset of all maps; whether they contain enough variation to 
perturb away self-crossings of A needs to be determined. In fact, the general 

R k R n 

-T 4~ ~r (x) 

F l F(x)= (x,~T(x),W2w(X)) 

Fig. 2. The attractor on the left is mapped using delay coordinates into the reconstruction 
space on the right. 
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answer is that they do not contain enough variation. Extra hypotheses on 
the dynamical system 4 are required to ensure that almost every h leads to 
an embedding of A. 

To see the need for extra hypotheses, consider the case that A is a 
periodic orbit of a continuous dynamical system whose period is equal to 
the sampling interval T. Topologically, A is a circle. In this case, F(h, 4, T) 
cannot be one-to-one for any observation function h. Let x be a po in t  
on the topological circle A. Since the period of A is T, h ( x ) =  
h(4_T(x)) . . . . .  h(4 (n_l)r(X)), SO that F=F(h, 4, T) maps x to the 
diagonal line {(Xl,...,xn): xl . . . . .  x,,} in R n. A circle cannot be mapped 
continuously to a line (in this case, the diagonal line in R n) in a one-to-one 
fashion. See Fig. 3. 

The one-to-one property also fails when A is a periodic orbit of period 
2T. Define the function d(x)=h(x) -h(4T(x) )  on A. The function d is 
either identically zero or it is nonzero for some x on A, in which case it has 
the opposite sign at the image point 4 v(x), and changes sign on A. In 
any case, d(x) has a root Xo on A. Since the period of A is 2T, we have 
h(xo)=h(4_T(xo))=h(4 2T(X0)) . . . .  . Then F(h, 4, T) maps Xo and 
4 T(Xo) to the same point in R n. If Xo and 4_v(Xo) are distinct, this 
says that F is not one-to-one. If Xo = 4 T(Xo), then the orbit actually has 
period T, and F fails to be one-to-one as above. In the presence of periodic 
orbits of period 2T, F(h, 4, T) cannot be one-to-one for any observation 
function h. 

On the other hand, when A is a periodic orbit of period 3T, or any 
period not equal to T or 2T, there is no such problem. In this case the 
delay-coordinate map of a periodic orbit A into R n is an embedding for 
almost every observation function h as long as the reconstruction dimen- 
sion is at least three. The statement for more general attractors A is as 
follows. 

@ 
/ 
I 
I 

1 
I 
I 
i 

I 

R 

Fig. 3. A two-to-one map from a topological circle to the real line. 
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T h e o r e m  2.5 (Fractal Delay Embedding Prevalence Theorem). Let 
05 be a flow on an open subset U of R k, and let A be a compact subset of 
U of box-counting dimension d. Let n > 2d be an integer, and let T >  0. 
Assume that A contains at most a finite number of equilibria, no periodic 
orbits of 05 of period T or 2T, at most finitely many periodic orbits of 
period 3T, 4T, .... nT, and that the linearizations of those periodic orbits 
have distinct eigenvalues. Then for almost every smooth function h on U, 
the delay coordinate map F(h, 05, T): U ~  R n is: 

1. One-to-one on A. 

2. An immersion on each compact subset C of a smooth manifold 
contained in A. 

Where Takens (27) showed that the delay-coordinate maps generically 
(in the C2-topology) give embeddings of smooth manifolds of dimension d, 
we substitute compact sets of box-counting dimension d, and replace 
generic with prevalent. 

The assumption of Theorem 2.5 that there are no periodic orbits of 
period T or 2T can be satisfied by choosing the time delay T to be 
sufficiently small. In fact, if we assume that the vector field on A satisfies 
a Lipschitz condition, that is, 2 = V(x), where I V ( x ) -  V(y)[ <<.LIx- Yl, 
then it is known (3~ that each periodic orbit must have period at least 2~/L. 
Hence, if T <  g/L, there will be no periodic orbits of period T or 2T. 

Theorem 2.5 assumes n>2d to avoid self-intersection of the 
reconstructed image of A. To see that this requirement cannot be relaxed 
in general, consider the case d =  1, n = 2d=  2 shown in Fig. 4a. Let the 
observation function h be the coordinate function xl ,  and consider the 
delay coordinate map R k ~  R 2 defined by 

F(~,, 05, T)= (Xl(X), x~(05 ~(x))) 

In the situation illustrated in Fig. 4a, x~(05_r(b))<x1(05_r(a))< 
xl(a)=Xl(b), and x1(05 r(c))<x1(05_r(d))<Xl(C)=x1(d). Setting F =  
F(Xl, 05, T), this means that in the reconstruction space R 2, F(a) lies 
directly above F(b), and F(d) lies directly above F(c). See Fig. 4b. The map 
F is continuous on the trajectory, so there is a continuous path, 
parametrized by Xl, connecting F(a) and F(c). There is also such a path 
connecting F(b) and F(d). According to Fig. 4b, there must be a value of 
xa in between where the curves meet, and two different points on the circle 
map together under F. Otherwise said, somewhere in between there is an 
x~ coordinate such that the upper and lower parts of the trajectory advance 
the same amount in the Xl direction during the time interval 7', and thus 
have identical delay coordinates. The map F(h, cb, T) is not an embedding. 
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If  the obse rva t ion  funct ion or  flow is pe r tu rbed  a small  amoun t ,  the same 

topo log ica l  a rgumen t  can be made.  Thus,  this example  is robust .  N o  small  
p e r t u r b a t i o n  of the m a p  is an embedding .  

Theo rem 2.5 is a special  case of  a s ta tement  a b o u t  dif feomorphisms.  
Before s ta t ing tha t  version,  we redefine delay coord ina te  maps  for 
di f feomorphisms.  

D e f i n i t i o n  2 .6 .  If g is a d i f feomorphism of an open subset  U of R k, 
and  h: U ~  R is a funct ion define the delay coordinate map F(h, g): U ~  R n 

by 

F(h, g)x  -= (h(x), h( g(x) ), h(g2(x) ) ..... h(g n- l (x ) ) )  

/ s ' \  

qS_T (b) 

~-T (a) 

F(d) 

F(c) 
F(a) 

F(b) 

x 1 

Fig. 4. (a) A trajectory of a flow that cannot be mapped using two delay coordinates in a 
one-to-one way. (b) The point at which the paths cross corresponds to a set of delay coor- 
dinates shared by two points on the trajectory. 
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We get the previous theorem by substituting g = q~ r in the following 
statement. 

T h e o r e m  2.7. Let g be a diffeomorphism on an open subset U of 
R k, and let A be a compact subset of U, boxdim(A) = d, and let n > 2d be 
an integer. Assume that for every positive integer p~<n, the s e t  Ap of 
periodic points of period p satisfies b o x d i m ( A p ) < p / 2 ,  and that the 
linearization Og p for each of these orbits has distinct eigenvalues. 

Then for almost every smooth function h on U, the delay coordinate 
map F(h, g): U ~  R n is: 

1. One-to-one on A. 

2. An immersion on each compact subset C of a smooth manifold 
contained in A. 

R e m a r k  2.8. The probe space for this prevalent set can be taken to 
be any set hi ..... ht of polynomials in k variables which includes all polyno- 
mials of total degree up to 2n. Given any smooth function ho on U, 
for almost all choices of " = ( ~ 1  ..... "t) from R t, the function h~= 
ho + Z~= 1 ekh,  satisfies properties 1 and 2. 

R e m a r k  2.9. The proof of Theorem 2.7 is easily extended to the 
more general case where the reconstruction map F consists of a mixture of 
lagged observations. The more general result says that 

F(x)  = (hi (x)  ..... h l (g  n ' -  I(X)),..., hq(x),..., hq(g nq l(x))) 

satisfies the conclusions of Theorem 2.7 as long as nl + - - -  --}-rtq > 2d and 
the corresponding conditions on the periodic points are satisfied. Those 
conditions are that boxdim(Ap) < p/2 for p <<, max{nl , . . . ,nq) .  

The reconstruction of chaotic attractors using independent coordinates 
from a time series was advocated in 1980 by Packard et al. (21) The delay- 
coordinate map is attributed in that work to a communication with 
D. Ruelle. The method actually illustrated in ref. 21 is somewhat different; 
namely, it is to use the value u, of the time series and its time derivatives 
fit, fit .... as independent coordinates. 

In 1981, Takens (2v) published the first mathematical results on the 
delay-coordinate map. Around the same time, Roux and Swinney (23) 
exhibited plots of delay-coordinate reconstructions of experimental data 
from the Belousov-Zhabotinski reaction. 

In 1985, Eckmann and Ruelle (9) took the idea one step further and 
suggested examining not only the delay coordinates of a point, but also the 
relation between the delay coordinates of a point and the next point Which 
occurs T time units later. In principle, one can then approximate not only 
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the attractor, but the attractor together with its dynamics. Since ref. 9 it has 
become common practice to gather points that are close in reconstruction 
space, and use their next images to construct a low-order parametric model 
which approximates the dynamics in a small region. This idea has begun 
to be used for prediction and noise reduction applications. See, for 
example, refs. 1, 6, 12, 13, 15, 16, 18, and 28. 

2.3. Sel f - In tersect ion 

In the case that the reconstruction dimension n is not greater than 
twice the box-counting dimension d of the set A, the map F in the fractal 
Whitney embedding prevalence theorem (Theorem 2.3) will often not be 
an embedding. However, if d <  n, most of A will still be embedded. In the 
case that A is a smooth manifold of dimension d, almost every F will be 
an embedding outside a subset of A of dimension at most 2 d -  n. If d <  n, 
then 2 d - n  < d, and so this exceptional subset will have positive codimen- 
sion in A. 

If A is simply a compact set of box-counting dimension d, then the 
situation is slightly different. We will call the pair x, y of points 6-distant 
if the distance between them is at least 3. Then we define the 3-distant self- 
intersection set of F to be the subset of A consisting of all x such that there 
is a 3-distant point y with F(x)= F(y); that is, 

_r(F, 3 ) =  {xeA:  F(x )=F(y ) fo r  s o m e y ~ A ,  I x -  Yl ~>3} 

Then the result is that for every 3 > 0, the lower box-counting dimension 
of the 3-distant self-intersection set N(F, 3) is at most 2 d - n  for almost 
every F. A precise statement is given by the next theorem. 

T h e o r e m  2.10 (Self-Intersection Theorem). Let A be a compact 
subset of R k of box-counting dimension d, let n ~< 2d be an integer, and let 
3 > 0. For  almost every smooth map F: R k ~  Rn: 

1. The 3-distant self-intersection set _r(F, 3) of F has lower box- 
counting dimension at most 2 d - n .  

2. F is .an immersion on each compact subset C of an m-manifold 
contained in A except on a subset of C of dimension at most 
2 m - n -  1. 

For example, consider mapping a circle to the real line. In this case 
d--  m = n = 1, and Theorem 2.10 says that a prevalent set of F are immer- 
sions outside a zero-dimensional set. This is clear from Fig. 3, where the 
zero-dimensional set consists of a pair of points. The map is at least 2 to 
1 outside this set, and hence nowhere an embedding. 
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On the other hand, setting d = m = 1 and n = 2 in the theorem, we see 
that a prevalent set of maps F from the circle to the plane are immersions, 
and are embeddings outside a zero-dimensional subset. Thus, the maps 
shown in Figs. la and lb are of the prevalent type, immersions which are 
one-to-one except for at most a discrete (zero-dimensional) set of points. 
Figure lc, on the othe.r hand, is nonprevalent. Almost any map near F will 
perturb away the cusp. 

J'here is also a self-intersection version of the fractal delay embedding 
prevalence theorem (Theorem 2.5) which one gets by making the obvious 
changes. Thus, if n ~< 2d, then for each 6 > 0 there exists a subset Z(F, 6), 
whose box-counting dimension is at most 2 d - n ,  on which the delay- 
coordinate map fails to be one-to-one. Note that the result is independent 
of 6 > 0. If M is a closed subsed of an m-manifold contained in A, then 
there is a subset.El of M of dimension at most 2 m - n -  1 on which the 
map fails to be an immersion. 

2.4. How Many Delay Coordinates Do You Need? 

When using a delay coordinate map (or filtered delay coordinate map, 
described in the next section) to examine the image F(A) in R n of a set A 
in R k, the choice of n depends on the objective of the investigation. 
Different choices of n suffice for the different goals of prediction, calculation 
of dimension and Lyapunov exponents, and the determination of the 
stability of periodic orbits. 

To compute the dimension of A, all that is required is that 

dim F(A) = dim A (2.1) 

whether the dimension being used is box-counting, Hausdorff, information, 
or correlation dimension. The latter two depend on a probability density 
on A and F(A). It is shown in ref. 24 that for the case of Hausdorff dimen- 
sion, the equality (2.1) holds for almost every measurable map F, in the 
sense of prevalence, as long as n ~>dim(A). The probe space of perturba- 
tions for this result is the space of all linear transformations from R k to R n. 
Mattila (19) proved that equality (2.1) holds for almost every orthogonal 
projection F. 

It is somewhat surprising that there are examples for which (2.1) does 
not hold for any map F when box-counting dimension is used, even under 
the hypothesis n > boxdim(A). An example of this type is given in ref. 25. 
However, in most cases of compact sets which arise in dynamical systems, 
we expect Hausdorff dimension to equal box-counting dimension. 

In practical situations, if attempts to measure boxdim(A) result in 
answers dependent on n, where n > boxdim(A), then the variation would 
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seem to be a numerical artifact, since there is no theoretical justification for 
which of the values of n greater than boxdim(A) gives the more accurate 
result. The usual technique is to increase n until the observed dimension of 
boxdim F(A) reaches a plateau, and to use this result. The resulting 
number might be called the plateau dimension. While the plateau dimension 
may indeed give the best numerical estimate of the dimension of A, there 
does not seem to be theoretical or numerical justification of this bias, and 
the question needs further investigation. Notice that n > boxdim(A) does 
not guarantee that almost every F is one-to-one, but that is not required 
for dimension calculation. 

If the objective is to use F(A) to predict the future behavior of trajec- 
tories, then it is sufficient to have the map F be one-to-one, in which case 
n > 2. boxdim(A) is needed. Knowing the current state in F(A) is sufficient 
to predict the future of the trajectory (at least in the short run). In the 
situation of Fig. lb, on the other hand, prediction on the periodic orbit A 
would still be possible, except when the trajectory was at the midpoint of 
the "figure eight." 

If the objective is to compute the Lyapunov exponents of the system, 
it is necessary to ask which exponents are to be computed. For  a simple 
example, suppose the attractor A is a periodic orbit. Then the best possible 
result of the examination of F(A) is to observe that 0 is a Lyapunov 
exponent. The other exponents, presumably all negative, cannot be 
observed without introducing perturbations. More generally, if an attractor 
A lies on a manifold of dimension m (as a 2.2-dimensional attractor might 
lie on a three-dimensional manifold), it will certainly be impossible to 
measure more than m true exponents from an embedding, even if the 
reconstructed image F(A) lies in R n with n > m. There are no criteria for 
determining the smallest manifold containing A. 

Theorems 2.3 and 2.5 say that if n > 2. boxdim(A), then almost every 
F is an embedding of all smooth manifolds that lie in A. The smooth 
manifolds we have in mind are the surface corresponding to the unstable 
directions on the attractor A, that is, the unstable manifolds. Under an 
embedding, the differential information is preserved along smooth direc- 
tions, such as unstable manifolds, indicating that positive Lyapunov 
exponents should be computable from the image F(A). 

The stable manifolds, on the other hand, will be likely to intersect A 
in a Cantor set. The image of a Cantor set in F(A) may be quite com- 
pressed. For  example, a set which is the product of five Cantor sets whose 
dimensions sum to 0.5 might be mapped to a one-dimensional line in F(A). 
It seems difficult to recover any exponents in these directions from 
knowledge of the reconstructed dynamics in F(A). 

The self-intersection results in Section 2.3 are aimed at another kind of 
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question. A relevant experiment involving a vibrating ribbon is described in 
refs. 8 and 26. In this case, the Poincar6 map has an attractor whose 
dimension was experimentally calculated to be 1.2. The investigators were 
interested in determining the eigenvalues of the linearization of a period-3 
point on the attractor. 

Using a delay-coordinate map of the attractor into R 2 did not result 
in a one-to-one map, which is consistent with our results in Section 2.2. 
Theorem2.10 of Section2.3, which deals with self-intersection, suggests 
that the subset 2" of A on which the map into R 2 fails to be one-to-one 
should have dimension at most 2 d -  n = 2 x 1.2 - 2 = 0.4. They found that 
the self-intersection set looked like a finite set. If X indeed has dimension 
0.4 or less, as we would expect, then the set S would be unlikely to include 
the periodic point in question, and the delay-coordinate map would be 
expected to be one-to-one in a neighborhood of that orbit. Numerical 
investigations of the dynamics near the periodic orbit revealed that the 
dynamics did appear to be two-dimensional, and the researchers were able 
to estimate numerically the eigenvalues of the orbit at these points. 

3. THE DELAY C O O R D I N A T E  M A P  A N D  FILTERS 

3.1. Main  Results 

So far, we have defined the delay coordinate map x---, F(h, g ) x  from 
the hidden phase space R k to the reconstruction space R n. Under suitable 
conditions on the diffeomorphism g, the delay coordinate map F(h, g) is 
an embedding for almost all observation functions h. In this formulation, 
information from the previous n time steps is used to identify a state of the 
original dynamical system in R k. 

For  purposes of measuring quantitative invariants of the dynamical 
systems, noise reduction, or prediction, it may be advantageous to create 
an embedding that identifies a state with information from a larger number 
of previous time steps. However, working with embeddings in R n is difficult 
for large n. A way around this problem is to incorporate large numbers of 
previous data readings by "averaging" their contributions in some sense. 
This problem has also been treated in ref. 7. 

To this end, generalize the delay-coordinate map F(h, g): R k ~  R W, 

F(h, g )x  = (h(x), h(g(x))  ..... h(g w- l (x) ) ) r  

where the superscript T denotes transpose, by defining the filtered delay- 
coordinate map F(B, h, g): R k ~ R n to be 

F(B, h, g )x  = Br(h, g )x  (3.1) 
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where B is an n x w constant matrix. Thus, each coordinate of F(B, h, g)x 
is a linear combination of the w coordinates of F(h,g)x. Here we are 
considering the case where g is a diffeomorphism, for notational 
convenience. Everything we say applies to a flow q~ by setting g equal to 
the time - T  map of the flow. We will call w the window length of the 
reconstruction, since there are w evenly-spaced observations used. We call 
n the reconstruction dimension, since R n is the range space of the map. We 
may as well assume that n ~< w and that B has rank n; otherwise we could 
throw away some rows of B without losing information. Assuming that B 
is a fixed matrix restricts the filter to be a linear multidimensional moving 
average (MA) filter. Autoregressive (AR) filters in general can change the 
dimension of the attractor. ~4'2~ 

If B is the identity matrix (denoted I), the map is the original Takens 
delay coordinate map. As stated in the previous section, in that case, 
F(L h, g)= F(h, g) is almost always an embedding as long as n is greater 
than twice the box-counting dimension of the attractor and the periodic 
points of period p less than n have distinct eigenvalues and make up a set 
of boxdim < p/2. 

Under filtering, some complications are caused by the existence of 
periodic cycles. On the other hand, the next theorem states that in the 
absence of cycles of length smaller than the window length w, every moving 
average filter B gives a faithful representation of the attractor. 

T h e o r e m  3.1 (Filtered Delay Embedding Prevalence Theorem). 
Let U be an open subset of R k, g be a smooth diffeomorphism on U, and 
let A be a compact subset of U, b o x d i m ( A ) =  d. For  a positive integer 
n > 2d, let B be an n x w matrix of rank n. Assume g has no periodic points 
of period less than or equal to w. Then for almost every smooth function 
h, the delay coordinate map  F(B, h, g): U--, R n is: 

1. One-to-one on A. 

2. An immersion on each closed subset C of a smooth manifold 
contained in A. 

The probe space for perturbing h can be taken to be any space of poly- 
nomials in k variables which includes all polynomials of total degree up to 
2w. Furthermore,  in case n ~< 2d, the results of Theorem 3.1 hold outside 
exceptional subsets of A precisely as in Theorem 2.10. 

For  example, consider the 3 x 9 matrix 

~ 0 0 0 0 0 0 

i 1 1 0 0 (3.2) B =  0 0 3 3 3 

1 1 0 0 0 0 0 ~ 

822/65/3-4-12 
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Then 

F(B, h, g)x = (~(h(x) + h(g(x)) + h(g2(x))), 

�89 g3(x) ) + h(ga(x) ) + h(gS(x) ) ), 

�89 + h(gT(x)) + h(gS(x)))) 

Although the map F(B, h, g) uses information from 9 different lags, the 
"moving average" reconstruction space is only 3-dimensional. According to 
the theorem, if the dynamical system g has no periodic points of period less 
than w =  9, then F(B, h, g) is an embedding for almost all observation 
functions h. 

Remark 3.2. When the diffeomorphism g has periodic points, 
certain special choices of filters B will cause self-intersection to occur at the 
periodic points. However, under the genericity hypotheses on the dynami- 
cal system of Theorem 2.5, for example, almost all choices of an n • w 
matrix B imply the conclusions of Theorem 3.1. This follows from Remarks 
3.4 and 3.6. A more detailed view of the effect of periodic points of the 
dynamical system is given in Sections 3.3 and 3.4. 

3.2. Examples of  Filters 

In this section we will list some examples of filters that may be useful 
in given situations. The easiest example is a simple averaging filter. For any 
integers m, n, let B be a n x mn matrix of form 

1/m . .. 1/m ) 

B= 1/m... 1/m (3.3) 

1/m... 1/m 

where there are m nonzero entries in each row. In the presence of noise, 
this filter should perform well compared to the more standard delay-coor- 
dinate embedding which uses every m th reading and discards the rest. 

A more sophisticated noise filter was suggested in ref. 5 for a slightly 
different purpose, and elaborated on in the very readable ref. 2, where it is 
used for dimension measurements. It is based on the singular value decom- 
position from matrix algebra, also known as principal component analysis. 
Let Yl,..., YL be the reconstructed vectors in R W, where L is the length of the 
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data series. Following Broomhead and King, (5) define the L x w trajectory 
matrix 

A = - ~  \ y r r j  

where the YT are treated as row vectors. The covariance matrix of this 
multivariate distribution is A rA. The off-diagonal entries of A TA measure 
the statistical dependence of the variables. 

The singular value decomposition (~4) of the L x w matrix A, where 
L ~ w ,  is 

A = VSU T (3.4) 

where V is an L x L orthogonal matrix, U is a w x w orthogonal matrix 
(this means that VrV= I, UrU= I), and S is an L x w diagonal matrix 
(meaning that the entries o-~ of S are zero if i r j). By rearranging the rows 
and columns of U and V, we can arrange for the singular values of A to 
satisfy a l l />  a22 ~> ""  >/aww ~> 0. The bot tom L - w rows of S are zero. 

The singular value decomposition suggests the use of the filter B -- U r. 
That  is, instead of plotting the vectors yl,..., YL in reconstruction space R w, 
plot the vectors Uryl ..... UryL. One immediate positive consequence of this 
change of variables is the statistical linear independence of the new 
variables. The covariance matrix of the new trajectory matrix 

= A U  

is (AU)rAU= S r& a diagonal matrix. 
In practice, one can do better than B = U r. This is because some of the 

nonzero singular values are dominated by noise. A rule of thumb is to 
ignore (by setting to zero) all singular values below the noise floor of the 
experimental data .  Ignoring all but the largest k singular values is 
equivalent to letting the filter B in Eq. (3.1) be the top k rows of U r. The 
rows of U r are orthogonal, so B is still full rank. Theorem 3.1 implies that 
F(B, h, g) will typically be one-to-one and immersive. 

This program was followed in ref. 2, in the context of measuring the 
correlation dimension of chaotic attractors in a stable way. They used a 
filter B that consisted of the rows of U r that corresponded to singular 
values above 10 -4. 
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3.3. Condit ions on Periodic Orbits Which  Imply O n e - t o - O n e  

For special filters B, conclusions 1 and 2 of Theorem 3.1 can fail, but 
only for periodic points. That is, some periodic points of period less than 
w may be mapped together under the map F(B, h, g). 

For  example, assume 
I !  1 1 1 a ~ 0 0 \  

! 

1 1 1 1 ( ~ /  B =  a a a a v / (3.5) 

4 4 4 4 /  

and assume that g has a period-4 orbit, that is, g 4 ( x ) =  X. Then for any h, 
F(B, h, g) maps all four points of the period-4 orbit to the same point in 
R 3, so F(B, h, g) fails to be one-to-one. There is no way for any observation 
function to distinguish the four points, since their outputs are being 
averaged over the entire cycle. Thus, the filtered delay coordinate map fails, 
for all observation functions h, to be one-to-one. 

A similar problem occurs with the filter 

Now 

B =  1 0 �89 (3.6) 

0 �89 0 

F(B, h, g)x  = (�89 + h(g2(x)) ), 

l(h(g(x)) + h(g3(x))), 

l(h( g2(x) ) + h(g4(x) ) ) ) 

Assume that the period-four orbit of g consists of Xo, x l=g(xo) ,  
x 2 = gZ(x0) , and x3 = g3(xo). Now xo and x2 are mapped to the same point 
in the reconstruction space R 3 by F(B, h, g), and the same goes for xl and 
x3. Again, the map cannot be one-to-one for any h. 

A second obvious problem can be illustrated when the dynamical 
system has more than one fixed point. No matter how h is chosen, the filter 

1 ( 3 . 7 )  B =  �89 2 
1 0 2 

maps all fixed points to the origin in R 3, violating the one-to-one 
condition. 

In each of these situations, the underlying dynamical system g may 
dictate that some periodic points will become identified under a particular 
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filter B, no matter  how "generic" the observation function h. On the other 
hand, these identifications occur only at periodic points. Further, even in 
the case of periodic points, it turns out that the restrictions on B exem- 
plified by the three cases above are the only restrictions. That  is, if these are 
avoided, then F(B, h, g) is one-to-one for a prevalent set of observation 
functions h. 

To be more precise about  these restrictions, we need to make some 
definitions. For  each positive integer p, denote by Ap the set of period-p 
points of g lying on A. That  is, Ap= {xEA: gP(x)--x}. Let I ,  denote the 
n x n identity matrix and (., �9 ) denote greatest common divisor. We will use 
the convention that (p, 0 ) = 0 .  For  integers p > q ~ > 0 ,  define the 
p x (p - (p, q)) matrix 

Ip (p,q) ) (3.8) 
Cpq= --I(p,q) . . . .  I(p,q) 

Define Cp~ to be the oo x ( p - ( p ,  q))) matrix formed by repeating the 
block Cpq vertically, and for a positive integer w, define Cpq to be the 

0 o  matrix formed by the top w rows of Cpq. 
T h e o r e m  3.3. Let U be an open subset of R k, let g be a smooth 

diffeomorphism on U, and let A be a compact  subset of U of box-counting 
dimension d. Let w and n be integers satisfying w ~> n > 2d. Assume that B 
is an n x w matrix of rank n which satisfies: 

w A1. rank BCpc > 2-boxdim(Ap) for all 1 ~< p ~< w. 

A2.  rank BC'p~ > boxdim(Ap) for all 1 ~< q < p ~< w. 

Then for almost every smooth function h, F(B, h, g) is one-to-one on A. 

Remark 3.4. Note that rank Cpq=p--(p, q), and so rank C;q= 
rain{w, p - ( p ,  q)}. It follows that rank BCpo >~ min{n, p} and rank BC;q >~ 
min{n, p/2} for B=In, and also for almost every n x w matrix B. 

To illustrate the restrictions that Theorem 3.3 puts on moving average 
filters, assume that B is the 3 x 6 matrix (3.5). In particular, the filter B 
must satisfy condition A2 for p = 4, q = 1, which means 

rank B 

1 o o\ 
0 1 0 

0 0 1 

- 1  - 1  - 1  

1 0 0 

0 1 0 

> boxdim A 4 
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The rank on t~he left-hand side is zero, however, and if there exists any 
period-4 orbit, the filter (3.5) fails this condition. This is consistent with 
what we have already noticed: in the presence of a period-4 orbit, the map 
F(B, h, g) is not one-to-one for any h. 

The filter (3.6) satisfies the above condition as long as there are finitely 
many period-4 orbits. However, it fails condition A2 for p = 4, q = 2, which 
requires (11)0 rank B - 1  > b o x d i m  A 4 

0 -  

1 

This is again consistent with our earlier observation. 
Finally, if there exist fixed points, the filter (3.7) fails the condition A1 

for p = 1 if there exist fixed points. That  is because condition A1 requires 

rank B > 2. boxdim A 

Since the rank on the left side is zero, the condition fails unless the set of 
fixed points is empty. 

3.4. Condit ions on Periodic Orbits Which  Imply an Immersion 

There are also rather obvious situations when certain filters cause 
F(B, h, g) to fail to an an immersion. Assume that g is a diffeomorphism on 
a circle that has a fixed point x. Assume that the derivative of g at x is - 2 .  
Consider the filter 

B =  ~ �89 (3.9) 
2 0 

In this case, the map F(B, h, g) cannot be an immersion at x for any obser- 
vation function h. For  a tangent vector v in TxM= R 1, the derivative map 
is 
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DF(B, h, g)(x)v = B 

Vh(x)% \ 
Vh(g(x)):r Dg(x)v I 

Vh(g w- l (x ) i r  Dg w- l(x)v/ 

~\ / Vh(x)T(v) \ /~\ 
( !  ~ 0 ~ [u~' 

= ~ �89 ul]~ Vh(x ) r (4v ) /=~01  
o ~ X/\Vh(x)~(_sv) / \ / 

so the tangent map of F(B, h, g) at x is the zero map. 
In the case of an m-dimensional manifold M with a fixed point x, it 

can be checked that for a filter B of this type, F(B, h, g) will fail to be an 
immersion for all h as long as the linearization of g at x has an eigenvalue 
of - 2 .  As in the one-to-one case, the immersion will fail only for periodic 
points. 

To be precise, given numbers cl,..., Cr, define the ov x rp matrix 

clip crlp (3.10) Op(c1,..., Cr)= C2Ip. C2rlp). . 

where Ip denotes the p x p identity matrix. For  a positive integer w, let 
Dp(C~,..., cr) be the matrix formed by the top w rows of D~(c, ..... cr If the 
ci are distinct, then rank Dp(C~ ..... cr) = rain{w, rp}. 

T h e o r e m  3.5. Let U be an open subset of R k, let g be a smooth 
diffeomorphism on U, and let A be a compact  subset of a smooth 
m-manifold in U. Let w and n be integers satisfying w ~> n ~> 2n. Assume that 
the linearizations Dg p of periodic orbits of period p less than or equal to 
w have distinct eigenvalues. Assume that B is an n x w matrix of rank n 
which satisfies: 

A3. rank BDp(2i l,...,2i~)>boxdim(Ap+r-1) for all l ~ < p < w ,  
1 ~< r ~<m, and for all subsets ,~i~,..., ,i~, of eigenvalues of the 
linearization at a point in Ap. 

Then for almost every smooth function h, F(B, h, g) is an immersion on A. 

R e m a r k  3.6. See Theorem 4.14 for a proof. Note that since rank 
Dp(2~ ,..., 2r )=min{w,  rp} for distinct eigenvalues )4,, it follows that rank 
BDp = rain{n, rp} for the original delay coordinate case of B = Ix, and also 
for almost every n x w matrix B. 
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To illustrate, the condition A3 is not satisfied for filter (3.9) when g 
has a fixed point with an eigenvalue of - 2 .  That condition requires that 
rank B D ~ ( - 2 )  > 0, but 

(,, ' /tit BD4(  -- 2 ) = B _2)2 = 

- 2 ) 3 /  

4. PROOFS 

This section contains the proofs of the results stated above. After 
some fundamental lemmas, we give the proofs of the Whitney forms of 
the embedding theorems. These follow Lemma4.11. The proofs of the 
delay-coordinate forms involving filters, Theorems 3.3 and 3.5, follow 
immediately from Theorems 4.13 and 4.14, respectively. This section 
concludes with the proof of Theorems 2.7 and 3.1, which are special cases 
of Theorems 3.3 and 3.5. 

k e m m a  4.1. Let n and k be positive integers, Yl,..., Yn distinct 
points in R ~, and ul, . . . ,un in R, vl,..., vn in R k. 

l. There exists a polynomial h in k variables of degree at most n - 1 
such that for i = 1 ..... n, h (y i )  = ui. 

2. There exists a polynomial h in k variables of degree at most n such 
that for i = 1,..., n, V h ( y i )  = vi. 

Proo f .  1. We may assume, by linear change of coordinates, that the 
first coordinates of Yl ..... yn are distinct. Then ordinary one-variable inter- 
polation guarantees such a polynomial. 

2. First assume k =  1. There exists a polynomial of degree at most 
n - 1  in one variable that interpolates the data. The antiderivative is the 
desired polynomial h. 

In the general case, by a linear change of coordinates, we may assume 
that for each j =  1,..., k, the j t h  coordinates of Yl ..... y ,  are distinct. The 
above paragraph shows that for j = 1,..., k there is a polynomial of degree 
at most n in the j t h  coordinate xj whose derivative hxj interpolates the j t h  
coordinate of u, for i =  1,..., n. The sum of all k of these polynomials is a 
polynomial of degree at most n which satisfies the conclusion. 

L e m m a  4.2. Let F ( x ) =  M x  + b be a map from R' to R n, where M 
is an n • t matrix and b E R  n. For a positive integer r, let ~ > 0  be the r th 
largest singular value of M. Denote by Bp the ball centered at the origin 
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of radius p in R e, and by B~ the ball centered at the origin of radius 6 in 
R' .  Then 

Vol(Bp c~ F ~(B~)) < 2t/2(6/ap) ~ 
Vol(Bp) 

Proof. Note that decreasing any singular value of M does not 
decrease the left-hand side. Thus we may assume that the singular values 
of M satisfy cr I . . . . .  ar = a, and 0 = ar+ ~ = ar+2 . . . .  . Let M = VSU T be 
the singular value decomposition of M. Here S is a diagonal matrix with 
entries sH . . . . .  Srr=a and all other entries zero, V is an n x n  
orthogonal matrix, and U is a t x t orthogonal matrix. 

Since the columns of U and V each form an or thonormal  set, we 
recognize MBp = VSUrBp as an r-dimensional ball of radius ap lying in R' .  
In fact, the first r columns of V magnified by the factor ap are radii which 
span MBp. 

The set F-~(B~)c~ Bp consists of the vectors in Bp whose image by M 
lands in a ball of radius 5 in R ' .  This is a cylindrical subset of Bp with base 
dimension r and base radius 6/a. The subset thus has t-dimensional volume 
less than ( ( ~ / o ' ) r C r p  t r c  t r ,  where C r =  gr/2/(r/2)! denotes the volume of 
the r-dimensional unit ball. The volume of B o is ptC,, so 

VoI(Bp n F I(B~)) 
Vol(Bp) 

< (6/~)rP ' - rC r C, < 2t/2 
p~C, 

I . e m m a  4.3. Let S be a bounded subset of R k, boxdim(S) = d, and 
let Go, G~,...,Gt be Lipschitz maps from S to R n. Assume that for each x 
in S, the rth largest singular value of the n x t matrix 

Mx = {G,(x),..., G,(x)} 

is at least cr>0. For  each c~eR' define G ~ = G 0 + Z ~ = l a i G ; .  Then for 
almost every c~ in R t, the set G~I(0)  has lower box-counting dimension at 
most d - r .  If  r > d, then G2I(0)  is empty for almost every e. 

Proof. For  a positive number  p, define the set B o to be the ball of 
radius p centered at the origin in Rq For  the purposes of proving the 
theorem, we may replace R e by Bp. For  the remainder of the proof, we will 
say that G~ has some property with probability p to mean that the 
Lebesgue measure of the set of a e Bp for which G~ has the property is p 
times the measure of Bp. For  example, if xE S, then Lemma 4.2 shows 
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that ]G,(x)l=lGo(x)+M:,(c~)t<~e for e~Bp  with probability at most 
2t/2(g/ff p ) r. 

Let D > d, and let go > 0 be such that for 0 < e < go, the following two 
facts hold. First, S can be covered by e -D k-dimensional balls B(x, ~) of 
radius e, centered at x e S. Second, by the Lipschitz condition there exists 
a constant C such that the image under any G=, o~ e BR, of any e-ball in R k 
intersecting S is contained in a Ce-ball in R ". For  the remainder of the 
proof, we assume e < eo. 

The probability that the set G=(B(x, e)) contains 0 is at most the 
probability that [G~(x)[ < Ce, which is a constant times e r, since p and a 
are fixed. For  any positive number M, the probability that at least M of 
the e -D images G~(B(x,e)) contain 0 is at most  c l g r - D / M .  Therefore, 
G~-J(0) can be covered by fewer than M = e  -b of the e-balls except with 
probability at most Ca e b-(D r). As long as b > D -  r, this probability can 
be made as small as desired by decreasing e. 

Let p > 0. There is a sequence {ei} ~1  approaching 0 such that G~-1(0) 
can be covered by fewer than e~ b balls except for probability at most p2 ~. 
Thus, the lower box-counting dimension of G~-I(0) is at most b, except 
for a probability p subset of ~. Since p > 0  was arbitrary, lower 
boxdim(G=~(0))~<b for almost every ~. Finally, since this holds for all 
b > d - r ,  lower boxdim(G=~(O))<<,d-r. | 

R e m a r k  4.4. In case boxdim(S) does not exist, the hypotheses of 
the lemma can be slightly weakened by allowing d to be the lower box- 
counting dimension of S. A slight adaptation of the proof shows that 
boxdim can be replaced throughout Lemma 4.3 by Hausdorff dimension. 
In particular, if r > HD(S),  then G~-I(0) is empty for almost every ~ in R t. 

If in Lemma 4.3 we assume that rank(Mx) ~> d for each x e S instead 
of the assumption on the singular values, then G~-1(0) is empty for almost 
every ~. That is because one can apply Lemma 4.3 to the set S~= { x e S :  
r th largest singular value of M ~ > ~ }  to get G ~ I ( 0 ) c ~ S o = ~ .  Then 
S =  Uo>o S~ implies G ~ I ( 0 ) =  ~ .  We state this fact in the next lemma. 

L e m m a  4.5. Let S be a bounded subset of R k, boxdim(S) = d, and 
let Go, G1,..., Gt be Lipschitz maps from S to R n. Assume that for each x 
in S, the rank of the n x t matrix 

Mx = {aa(x),..., G,(x)} 

is at least r. For  each ~ ~ R t define G~ = Go + Z~-1 ~,-Gi - Then for almost 
every c~ in R t, the set G~-I(0) is the nested countable union of sets of lower 
box-counting dimension at most d - r .  If r>d ,  then G~I(0) is empty for 
almost every ~. 
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Lemma 4.6. Let A be a compact subset of R k. Let Fo, F1 ..... F, be 
Lipschitz maps from A to R'. For  each integer r ~> 0, let Sr be the set of 
pairs x -~ y in A for which the n x t matrix 

Mxy = { F l ( x ) -  FI(y),..., Ft(x)-  Ft(y) } 

has rank r, and let d r= lower  boxdim(Sr). Define F~=Fo+~=I cxi f  i" 
A ~ R " .  Then for c~= (el,...,ek) outside a measure zero subset of R t, the 
following hold: 

1. If d r'< r for all integers r ~> 0, then the map F~ is one-to-one. 

2. If dr ~> r for some integer r ~> 0, then for every 6 > 0, the lower box- 
counting dimension of the 6-distant self-intersection set X(F~, 8) is 
at most d r -  r. 

Proof. For i =  0,..., t, define Gi(x, y)= F~(x)-Fi(y). On the set Sr, 
the rank of the n x t matrix 

Mx = {al(x,y) ..... G (x, y)} 

is r. 
If r > d~, Lemma 4.5 shows that for almost every ~ e R ~, the origin is 

not in the image of Sr under the map G~ = Go + Y'. c<~Gg, or equivalently, 
F~(x) # F~(y) for x r y in Sr. If r > dr for all r, then F~ is one-to-one, since 
each pair x r y lies in some Sr. 

If r~<d,, let ( A x A ) ~ = { ( x , y ) e A x A :  I x - y [ > 1 6 }  be the subset of 
f-distant pairs of points in A x A. Since (A x A)a is compact for any 6 > 0, 
the minimum of the nth singular value of M~y in (A x A)a is greater than 
0. Lemma 4.3 shows that for almost every e, the origin is in G~((A x A)a) 
for a subset of (A x A)~ with lower box-counting dimension at most dr-  r. 
Therefore the 6-distant self-intersection subset X(F~, 8) of A, which is the 
image of this subset under the projection of (A x A)a to A, has dimension 
at most d r - r .  | 

T h e o r e m  4.7. Let A be a compact subset of R k, lower 
boxdim(A) =d.  If n > 2d, then almost every linear transformation of R k to 
R" is one-to-one on A. 

Proof. This follows immediately from Lemma 4.6 and the remark 
following it. Let {Fi} be a basis for the nk-dimensional space of linear 
transformations. For  each pair x 4 = y, the vector x -  y can be moved to any 
direction in R" by a linear transformation. In the terminology of 
Lernma4.6, S n = A x A - A  and Sr is empty for r=~n. Since lower 
boxdim(S,,)=2d<n, almost every F ~ = Z  eiFt is one-to-one on A. | 
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Remark 4.8. It is interesting that no statement similar to 
Theorem4.7 can be made if box-counting dimension is replaced by 
Hausdorff  dimension. In an Appendix to this work provided by I. Kan, 
examples are constructed of compact  subsets A of any Euclidean space R e 
that have Hausdorff  dimension d =  0, and such that no projection to R" for 
n < k is one-to-one on A. 

This striking difference between box-counting dimension and 
Hausdorff  dimension is related to the fact that Hausdorff  dimension does 
not work well with products. Extra hypotheses are needed on A, in par- 
ticular on the Hausdorff  dimension of the product A x A, to prove an 
analogue to Theorem 4.7. For  example, Marl6 has shown (see ref. 17 and its 
correction in ref. 9, p. 627) that if n > HD(A x A) + 1, then the conclusion 
of Theorem 4.7 again holds. Of  course, using Lemma 4.3 and Remark 4.4, 
it turns out that only n > HD(A x A) is required: 

Theorem 4.9. Let A be a compact  subset of R k, and let 
n > HD(A x A). Then almost every linear transformation of R k to R n is 
one-to-one on A. 

It was shown in ref. 10 that under the hypotheses of Theorem 4.7, 
almost every orthogonal projection is one-to-one (and in fact has a HSlder 
continuous inverse). 

Defini t ion 4.10.  For  a compact  differentiable manifold M, let 
T(M)= {(x, v): xEM, veTxM} be the tangent bundle of M, and let 
S(M) = {(x, v) e T(M): Ivl = 1 } denote the unit tangent bundle of M. 

Lemma 4.11.  Let A be a compact  subset of a smooth manifold 
embedded in R k. Let F0, F1 ..... Ft: R k ~ R n be a set of smooth maps from 
an open neighborhood U of A to R n. For  each positive integer r, let Sr be 
the subset of the unit tangent bundle S(A) such that the n x t matrix 

{ DF,(x)(v),..., DF,(x)(v) } 

has rank r, and let d r = l o w e r  boxdim(Sr). Define F ~ = F 0 + Z  t ~iFi: 
" i = t  

U--* R n. Then the following hold: 

1. If dr < r for all integers r ~> 0, then for almost every ~ e R t, the map 
F~ is an immersion on A. 

2. If drT>r for some r>~0, then for almost every u e R  t, F= is an 
immersion outside a subset of A of lower boxdim ~< dr - r. 

Proof. For  i = 0  ..... t, define G~: S(A)---~R" by G~(x,v)=DF~(x)v. If 
r > dr for all r ~> 0, then Lemma 4.5 applies to show that for almost every 
or G~a(O)~ Sr is the empty set. Since S(A) is the union of all St, G~-~(0) 
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is empty. Thus, no unit tangent vector is mapped to the origin, and F~ is 
an immersion. 

In case dr~>r for some r, there is a positive lower bound on the 
singular values of the Gt on S(A). Lemma 4.3 implies that there is a subset 
of unit tangent vectors of lower boxdim ~< dr - r that can map to zero. The 
projection of this subset into A has lower boxdim ~< d r - r .  | 

Proof of  Theorems 2.2, 2.3, and 2. 10. Theorem 2.2 is a special case 
of Theorem 2.3. To prove the latter, we need to show that a prevalent set 
of maps are one-to-one and immersive. 

Let F~,...,F, be a basis for the set of linear transformations from 
R k -§ R'. In the notation of Lemma 4.6, the set S,  = A x A - A and S r = 

for r r  Since boxdim(A x A ) =  2d<n,  F~ is one-to-one on A for almost 
every cr R ~. if  any Other maps Ft+l, . . . ,Fc are added, the rank of Mxy 
cannot drop for any pair x r y, so almost every linear combination of 
Fi,..., Fc is one-to-one on A. 

The proof  of the immersion half uses Lemma4.11 instead of 
Lemma 4.6. Since b o x d i m ( A ) =  d, C is a subset of a smooth manifold of 
dimension at most d, and therefore boxdim S(C)~< 2 d - 1 .  In the notation 
of Lemma4.11,  S , = S ( C )  and S r = ~  for rCn.  Since n > 2 d > 2 d - l =  
boxdim S, ,  the proof  follows from Lemma 4.11. 

The proof  of Theorem 2.10 is similar, except that the second part  of 
the conclusions of Lemmas 4.6 and 4.11 are used. For  example, in the use 
of Lemma 4.6, S , = A  x A - A  and S t =  ~ for r r  as before, but now 
b o x d i m ( A x A ) = 2 d > ~ n .  Thus for each 5 > 0 ,  for almost every F~, the 
5-distant self-intersection set Z(F~, 6) has lower box-counting dimension at 
most 2 d - n .  The immersion half is again analogous. I 

D e f i n i t i o n  4.12.  Let U be an open subset of R k, let g: U--, U be 
a map, and let h: U-*  R be a function. Let w < w + be integers and set 
w = w + - w - + l .  For  l<~i<<.w, set g i = g  w-+i- l ,  so that g l = g  W and 
gw = gW+. Let B be an n x w matrix. Define the filtered delay-coordinate map 

F~+(B, h, g): U---'R" 

by 

w+ Fw-(B, h, g)(x) = B(h(gl(x)) ,  h(g2(x)),..., h(gw(X) )) r 

= B(h(g~-(x))  ..... h(gW+(x))) T 

Theorems 2.7, 3.1, 3.3, and 3.5 are corollaries of the next two results, 
for which we will use the following notation. Let g denote a smooth 
diffeomorphism on an open neighborhood U in R k. Let hi,...,ht be a basis 
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for the polynomials  in k variables of degree at mos t  2w. For  a smooth  
function ho on R ~ and for e e R  t, define h ~ = h 0 + Z ~ = ~ e i h ~ .  For  each 
positive integer p, denote by AR the set of period-p points of g lying on A. 
That  is, Ap = {x e A: gP(x)= X}. Let the matrices Cpq be as in Theorem 3.3. 

T h e o r e m  4 .13 .  Let g be a smooth  diffeomorphism on an open 
ne ighborhood  U of  R k, and let A be a compact  subset of U, boxdim(A)  = d. 
Let n and w - < w  + be integers, n ~ < w = w  + - w  + 1 .  Assume that  the 
n x w matrix B satisfies: 

A ] .  rank BCpo > 2.  boxdim(Ap) for all 1 ~< p ~< w. 

A2.  rank BCpWq > boxdim(Ap) for all 1 ~< q < p ~< w. 

Let hi,..., ht be a basis for the polynomials  in k variables of degree at most  
2w. Then for any smooth  function ho on R k, and for almost  every e e R t, 
the following hold:  

1. If  n > 2d, then F(B, ha, g): U ~  R n is one- to-one on A. 

2. If  n ~< 2d, then for every 6 > 0, the 6-distant self-intersection set 
Z(F(B,h~, g),6) has lower box-count ing dimension at most  
2 d -  n. 

Proof. For  i = 1 ..... t define 

Fi(x)= B ( h~(g~(x)) I 

By definition, F(B, ha, g) = ~= ~ F~. To use Lemma 4.6, we need to check 
for each x r y the rank of  the matrix 

M~y = (F~(x) - FI(y),..., F,(x) - F,(y) ) 
which can be written as 

where 

B(hl(gl(x))_hl(gl(y)) ... ht(gl(x))-fht(gl(y))l=Bj H 

\hl(gw(X))- hl(gw(y)) ... ht(gw(X))- h,(gw(y))/I 

H (hl'zl  h zl, / 
h, zq)/ 

q ~< 2w, the z i are distinct, and J = Jxy is a w x q matrix each of  whose rows 
consists of zeros except for one 1 and one - 1. By part  1 of  Lemma 4.1, the 
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rank of H is q. We divide the study of the rank of Mxy = BJH into three 
cases. 

Case I: x and y are not both periodic with period ~<w. 
In this case, Jxy is upper or lower triangular, and rank(Jxy) --- w. Since 

B, J, and H are onto linear transformations, the product BJH is onto and 
has rank n. The set of pairs x ~ y of case 1 has box-counting dimension at 
most 2d, and rank(M~y)= n. If g has no periodic points of period <~w, we 
are done, and conclusion 1 (respectively, 2) of Lemma 4.6 implies conclu- 
sion 1 (resp., 2) of the theorem. 

The remaining two cases are necessary to deal with periodic points of 
period ~< w. We show that conclusion 1 of Lemma 4.6 applies in both cases. 

Cose 2: x and y lie in distinct periodic orbits of period ~< w. 
Assume p and q are minimal such that gP(x) = x, gq(y) = y, and that 

1 ~< q ~< p ~< w. In this case the matrix J~y contains a copy of Cpo. Since H 
is onto, rank M~y = r a n k  BJx.vH= rank BJ~y. By hypothesis, rank BJxy>>, 
rank BCpo > 2. boxdim Ap, which is the box-counting dimension of the set 
of pairs treated in case2. By Lemma4.6 ,  for almost every c~eR ~, 
F~(x) ~ F~(y) for every such pair x r y. 

Caso ,3: Both x and y lie in the same periodic orbit of period ~< w. 
Assume p and q are minimal such that gP(x) = x, gq(x) = y, and that 

1 ~< q < p ~< w. Since x and y lie in the same periodic orbit, the column 
space of Jxy contains the column space of Cpq. Thus, rank BJxyH= 
rank BJxy >1 rank BCpq > boxdim Ap, which is the dimension of the pairs 
x ~ y of case 3. Now Lemma 4.6 applies to give the conclusion. | 

T h e o r e m  4.14.  Let g be a smooth diffeomorphism on an open 
neighborhood U in R k, and let A be a compact  subset of a smooth 
m-manifold in U. Assume that the linearizations of periodic orbits of period 
less than w have distinct eigenvalues. Let n ~< w be positive integers as in 
Theorem 4.13, and assume that the n x w matrix B satisfies: 

P,3. rank BDp(2il ..... 2 i r ) > b o x d i m ( A p + r - 1 )  for all l ~ < p < w ,  
1 ~<r~<m, and for all subsets 2;~ ..... 2ir of eigenvalues of the 
linearization Og p at a point in Ap. 

Let hi ..... ht be a basis for the polynomials in k variables of degree at most 
2w. Then for any smooth function ho on R k, and for almost every ~ e R t, 
the following hold: 

1 .  �9 If n ~>2m, then F(B, ha, g): U ~  R n is an immersion on A. 

2. If n < 2m, then F(B, h~, g) is an immersion outside an exceptional 
subset of A of dimension at most  2m - n - 1. 
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Proof. To apply Lemma 4.11, we need to check the rank of the n x t 
matrix 

(DFl(x)(v),..., DF,(x)(v) ) (4.1) 

for each (x, v) in the unit tangent bundle S(A). For a given observation 
function h, the derivative of F(B, h, g) is 

(Vh( g~- (x) )T DgW-(x)v I 
DF(B, h, g)(x)v = B 

\ Vh(g~+ (x))T DgW+ (x)v/I 

If x is not a periodic point of period less than w, then g~-(x),..., gW+(x) are 
distinct points. The facts that g is a diffeomorphism and v # 0 imply that 
Dgg(x)v#O for all i. Therefore by Lemma4.1, part2,  the set of vectors 
{DF(B, ha, g)(x)v: aER'} spans R'. In the notation of Lemma4.11, the 
subset S, contains all points of S(A) that are not periodic with period less 
than w, and d, = lower boxdim(S,)~< 2 m -  1. If g has no periodic points of 
period less than w, the proof is finished, by Lemma 4.11. 

If x is a periodic point of period p < w, then 

H~w. 
H~DI wl 

DF(B, h, g)(x)v = B 

Hf  Op Wp 
H~D21w1 

where 

Xi= gW- +i(x)= Xp+ i 

Hi = Vh(xi) 

wi = Dg(xi_ 1)"" Dg(xl) DgW- (x)v 

Di= Dg(xi 1)'" " Dg(xl) Dg(xp) .. " Dg(xi) 

Each matrix D; has the same set of eigenvalues )~t,...,)~m, and by 
hypothesis, they are distinct. If ul ..... Um is a spanning set of eigenvectors for 
D1, then it checks that uij=Dg(X~_l)...Dg(Xl)Uj for 1 ~ i ~ p ,  1 ~ j ~ m  
defines a spanning set {uil ..... Uim} of eigenvectors for Di. Thus, if 
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- -  m 
W I  - -  ~ - - j =  1 a j l A l j  

expansion of wi 
Thus DF(B, 

"1 -.. 1 

0 -.. 0 

0 --- 0 

0 -.. 0 

) ~ 1  " ' "  

O . . .  

. . .  

. . .  

2~... 

h, g)(x)v can be written as 

is the eigenvector expansion of wl, then the eigenvector 
is 52j m i ajuo, which has the same coefficients. 

B times the w-vector 

H 1  -1- . . .  -F 

0 

0 

0 

1 

0 

0 

0 

21 

0 

I 
0 \a,,U[m, ] 

0 
0 

;,o 

0 

0 
1 

0 
0 

0 

0 

"'-";' ] 
amU prm/I 

lip (4.2) 

To find the rank of the matrix (4.1) for (x, v) where x is periodic, we 
need to find the span of B times the vectors (4.2) for h = ha = Z cghi, e e R t. 
Assume that the eigenvector expansion of v has exactly r nonzero 
coefficients ai~ ..... ai .  By Lemma4.1, part2,  the set of vectors {Vh~(xi): 

E R'} spans R k. Then because the uu, 1 <~ j <~ m, are linearly independent, 
the vectors of form (4.2) span a space of dimension min{w, rp} as 
spans R t. 

Therefore, for this (x, v), the span of the vectors (4.1) has dimension 
D w equal to the rank of B p(Xi,,...,2i,). By hypothesis, the boxdim of such 

pairs (x, v) in S(A) is boxdim(Ap)+r-1.  By hypothesis, the rank of the 
n x t matrix (4.1) is strictly larger, so that Lemma 4. t l  applies to give the 
conclusion. 

Proof of Theorem 2.7. Apply Theorems 3.3 and 3.5 with B=In. 
According to Remarks 3.4 and 3.6, the conditions AI-A3 translate to 
p > 2. boxdim(Ap), p/2 > boxdim(Ap), and rain {n, rp } > boxdim(Ap) + r -  1, 
respectively, for 1 ~<p ~<n and 1 ~< r~< m. Thus, the hypothesis boxdim(Ap)< 
p/2 guarantees that AI-A3 hold. 

Proof of Theorem 3. 1. Since Ap is empty for 1 <~ p ~< w, the condi- 
tions A1-A3 of Theorems 3.3 and 3.5 are satisfied vacuously. 

822/65/3-4-13 
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APPENDIX .  H A U S D O R F F  D I M E N S I O N - Z E R O  SETS W I T H  
NO O N E - T O - O N E  P R O J E C T I O N S  

I t ta i  Kan 4 

The purpose of this Appendix is to construct a Cantor  set C ~ R  m 
whose Hausdorff  dimension is zero and which has the property that every 
projection of rank less than m is not one-to-one when restricted to C. 

D e f i n i t i o n  A.1. The Hausdorffs-dimensional outer measure of a set 
K is 

~ ' ( K ) = i i m  inf ~ lUll s 
650 IUil<6 i= 1 

where the infimum is taken over all covers {Ue} of K with the diameters 
of the U~ uniformly less than 6. The Hausdorff dimension of a nonempty set 
K is the unique value of s such that 

.)F'(K) = oe if t < s and ~ ' ( K )  = 0 if t > s 

Example A.2. We construct the subset C of R m as the union of two 
sets A = U m= 1 An and B = U ~= x Bn each of Hausdorff  dimension zero, with 
the property that for any projection P of rank less than m the images under 
P of A and B intersect, and thus P is not injective when restricted to C. 

The set An lies on a face of the unit m-cube and a = (al,  a2 ..... am) is 
in An if it satisfies the following restrictions on the binary expansion 
ai = a] a~ a~ ... of its coordinates: 

1. I f i = n ,  t h e n a  I=0 .  

2. If i r n and k >~ 0, then either (a) a~ = 0 for all l ~ (M2k, M2k + 1 ]; or 
(b) a l =  1 for all l c  (M2k, M2k+l].  

Here the sequence 0 = Mo < M 1  < M 2 . . .  increases sufficently rapidly so 
that lim(Mj+ 1/Mfl = ~ .  If i r  n, then the orthogonal projection of An on 
the ith coordinate axis i s a  Cantor  set which can be covered by 2 rk intervals 
of length 2 -M2k+l, where r ~ = k + ~ =  1 ( M 2 j - M 2 j  1). Thus, An can be 
covered by 2 TM 1)rk cubes with edges of length 2 M2k+l. Since rk ~< M2k, we 
see that limk ~ ~o(m-  1)rk/M2k +1 = 0 and both the lower box-counting and 
Hausdorff  dimensions of An are zero. Since A is the union of m copies of 
A, ,  we see that both the lower box-counting and Hausdorff  dimensions of 
A are zero. 

4 Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030. 
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The set Bn lies on a face of the unit m-cube opposite An and b is in 
B n if it satisfies the following restrictions on the binary expansion of its 
coordinates: 

1. If i = n ,  then bti= 1. 

2. I f i r  and k~>0, then either (a) b l = 0  for a l l / 6  (M2k+l, M 2 k + 2 ] ;  

or (b) bli= 1 for all I s  (M2k+l, M2k+2]. 

Here {Mj} is as above. The lower box-counting and Hausdorff dimensions 
of B are zero. The Hausdorff dimension of C = A ~ B is zero. 

Let P denote a projection of rank less than m. Let v = (Vl, v2,..., v,~,) in 
the null space of P be chosen so that [vi] ~< 1 for all i and v, = 1 for some 
particular n. We now show that P restricted to C is not injective by finding 
some b ~ Bn and a ~ An such that v = b - a .  Using the binary expansion 
coordinate notation, we define a and b as follows: 

1. If i = n ,  then a~=0 and b~= 1. 

2. If i Cn and k~>0, then (a) ati=O and bl=v~ for all 
le(M2~,M2k+l]; and (b) a ~ = ( v ~ + l )  m o d 2  and bl j=l  for all 
l e  (M2k+ 1, M2k+2]. 

Clearly we have v = b -  a and by the definition of An and Bn we also have 
a~An a n d b ~ B , .  | 
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